AMD’s Mobile Revival: Redefining the Notebook Business with the Ryzen 9 4900HS (A Rev - harlan4096 - 10 April 20
Quote:
At every turn in the story of AMD’s notebook portfolio, we’ve been there to document the highs and lows. Five years ago, AMD was definitely suffering from a combination of a poor platform, and poor notebook designs tailored for the budget end of the market. Last year, AMD scored a design win in the Microsoft Surface, and now 2020 is set to be another significant step back into this market, with the new Ryzen Mobile 4000 series. Touting over 100+ design wins this year for the new 7nm processor line, we have the first of the halo products in for review: the ASUS Zephyrus G14, with an 8-core Ryzen 9 4900HS under the hood. We’re comparing it to an equivalent Razer Blade 15-inch, and it is very clear that AMD can take the lead in a lot of tests, and be very competitive in others.
The Notebook Market and Ryzen Mobile 4000
One of the strongest elements to PC market growth in recent years is the notebook market. Users have been updating their mobile PC more frequently than their desktop, especially when new form factors offer more performance in thinner and lighter designs, with new features such as faster Wi-Fi, high resolution displays, and high capacity fast storage. All of which, in turn, has lead to a push for a quicker update cycle.
These new form factor designs, like thin and lights, or 2-in-1s, are driven by high performance components that are able to run efficiently across a wide spectrum of performance levels, to deliver throughput for gaming and work when needed, or to power down to conserve power when on the road or in an airplane. The cost of these new form factor devices have come down to something more palatable for the average user, but for a good number of years, AMD’s hardware wasn’t even in this market.
For 2020, AMD is expecting to be at the forefront of notebook design wins, due to two main features of the new Ryzen Mobile 4000 strategy: high performance components, and co-design with OEMs. When the OEMs start spending more money on designing higher profile systems for a specific processor, like the ASUS Zephyrus G14 with a Ryzen 9 that we have in for testing, it is clear that the hardware underneath should offer something that the market wants.
In total there are eleven of AMD’s new ‘Renoir’ Ryzen Mobile 4000 CPUs, split across the 15 W and 45 W markets. The top CPUs in each offer up to eight Zen 2 cores, Vega 8 integrated graphics, and the main differences between the two sets is going to be the base frequencies.
AMD Ryzen Mobile 4000 APUs
AnandTech Cores Threads Base Freq Turbo Freq L2 L3 GPU CUs GPU Freq TDP
H-Series
Ryzen 9 4900H 8 / 16 3.3 GHz 4.4 GHz 4 MB 8 MB 8 / 1750 MHz 45 W
Ryzen 9 4900HS 8 / 16 3.0 GHz 4.3 GHz 4 MB 8 MB 8 / 1750 MHz 35 W
Ryzen 7 4800H 8 / 16 2.9 GHz 4.2 GHz 4 MB 8 MB 7 / 1600 MHz 45 W
Ryzen 7 4800HS 8 / 16 2.9 GHz 4.2 GHz 4 MB 8 MB 7 / 1600 MHz 35 W
Ryzen 5 4600H 6 / 12 3.0 GHz 4.0 GHz 3 MB 8 MB 6 / 1500 MHz 45 W
Ryzen 5 4600HS 6 / 12 3.0 GHz 4.0 GHz 3 MB 8 MB 6 / 1500 MHz 35 W
U-Series
Ryzen 7 4800U 8 / 16 1.8 GHz 4.2 GHz 4 MB 8 MB 8 / 1750 MHz 15 W
Ryzen 7 4700U 8 / 8 2.0 GHz 4.1 GHz 4 MB 8 MB 7 / 1600 MHz 15 W
Ryzen 5 4600U 6 / 12 2.1 GHz 4.0 GHz 3 MB 8 MB 6 / 1500 MHz 15 W
Ryzen 5 4500U 6 / 6 2.3 GHz 4.0 GHz 3 MB 8 MB 6 / 1500 MHz 15 W
Ryzen 3 4300U 4 / 4 2.7 GHz 3.7 GHz 2 MB 4 MB 5 / 1400 MHz 15 W
All the 15 W CPUs are commonly referred to as the ‘U-Series’, while the 35-45 processors are known as ‘H-series’. We may use these terms interchangeably.
The Ryzen 7 15 W processors offer eight cores in that tiny thermal envelope. This means at full use, each core will only have access to under 2 W of power, and the system is still expected to be north of 2.2 GHz. We’ve seen the desktop Ryzen processors hit 3.0 GHz at under 3 W each, and these mobile parts are likely to be the best bins for power efficiency.
The 45 W processors are mainly aimed at higher throughput systems, and the first notebooks with this hardware will be paired with discrete graphics, providing systems totaling 100 W or more. For each H processor there is a corresponding HS processor, offering similar or almost similar specifications to the H processor, but at 10 W less. As mentioned above, these CPUs are ‘S’pecial in that OEMs have to work with AMD and meet specific criteria in the hardware design to be given the HS models. ASUS has an exclusive through Q2 and Q3 of 2020 on these with the Zephyrus G14, however we expect more models to come for the Christmas system. These HS systems will be part of AMD’s Continuous Validation Labs project, with a lab in Austin and a lab in Shanghai, that pre-tests any driver or software updates for compatibility before they are distributed, in order to maintain device performance.
AMD didn't just magically get here. There were a number of tough years in the last decade on its notebook platform.
2016: A Historic Low for AMD in Notebooks
Back in 2016, we reviewed five laptops concurrently, all featuring AMD’s latest mobile platform at the time, Carrizo. These systems were built by AMD’s key OEM partners at the time, such as HP, Lenovo, and Toshiba, and were aimed at the $500 to $900 market. At the time, AMD was struggling with a product that was not that good, and although was better than the previous generation, it still struggled to be competitive.
One thing that shot AMD in the foot was that AMD unified the design between its dual channel memory regular Carrizo parts and the single channel low cost Carrizo-L parts, which allowed OEMs to build regular systems with only a single memory channel to save costs. OEMs knew this crippled performance, but in enabled the headline processors in cheaper devices. These devices also ended up with low quality displays, mechanical hard drives, and were big and bulky because the user with a low budget could only afford this level of design. It ended up being a vicious circle of negative feedback – we covered the full story in a 24 page deep dive which you can read here.
As part of that analysis, we provided a number of potential solutions to the problem, including the fact that AMD should design its platforms for different segments and define its own market, rather than coalescing them all into one. We also also suggested AMD should take a leap and creating proper $1500 flagship reference systems for its OEM partners to provide a basis on which higher-end designs could be built. I also suggested that the OEMs also not be cheap and look at how $10 more on SATA storage can really bump the user experience.
An overriding solution to this issue was that AMD should build a notebook processor that is not only competitive, but also aims to beat the competition. At the time of Carrizo, we were still wondering what AMD had in its sleeve – the company had started talking about Zen and returning to the high performance market and we heard promises of it also coming to the notebook form factor. The company received a lot of praise with its first generation Zen desktop product, which increased as we saw Zen 2 being launched on TSMC’s leading 7nm process node. The mobile chips by contrast have been the last of each generation to show, given that the desktop and server products take advantage of multiple chiplet designs, leveraging benefits such as increased yield and frequency binning with reduced costs, while the mobile processors are still monolithic.
...
Continue Reading
|