Geeks for your information
Intel Columbiaville: 800 Series Ethernet at 100G, with ADQ and DDP - Printable Version

+- Geeks for your information (https://www.geeks.fyi)
+-- Forum: News (https://www.geeks.fyi/forumdisplay.php?fid=105)
+--- Forum: Hardware News (https://www.geeks.fyi/forumdisplay.php?fid=38)
+--- Thread: Intel Columbiaville: 800 Series Ethernet at 100G, with ADQ and DDP (/showthread.php?tid=6476)



Intel Columbiaville: 800 Series Ethernet at 100G, with ADQ and DDP - harlan4096 - 03 April 19

Quote:
[Image: Intel_Ethernet_Car_678x452.jpg]

Among the many data center announcements today from Intel, one that might fly under the radar is that the company is launching a new family of controllers for 100 gigabit Ethernet connectivity. Aside from the speed, Intel is also implementing new features to improve connectivity, routing, uptime, storage protocols, and an element of programmability to address customer needs.

The new Intel 800-Series Ethernet controllers and PCIe cards, using the Columbiaville code-name, are focused mainly on one thing aside from providing a 100G connection – meeting customer requirements and targets for connectivity and latency. This involves reducing the variability in application response time, improving predictability, and improving throughput. Intel is doing this through two technologies: Application Device Queues (ADQ) and Dynamic Device Personalization (DDP).

Application Device Queues (ADQ)

Adding queues to networking traffic isn’t new – we’ve seen it in the consumer space for years, with hardware-based solutions from Rivet Networks or software solutions from a range of hardware and software companies. Queuing network traffic allows high-priority requests to be sent over the network preferentially to others (in the consumer use case, streaming a video is a higher priority over a background download), and different implementations either leave it for manual arrangement, or offer whitelist applications, or do traffic analysis to queue appropriate networking patterns.

With Intel’s implementation of ADQ, it instead relies on the application deployment to know the networking infrastructure and direct accordingly. The example given by Intel is a distributed Redis database – the database should be in control of its own networking flow, so it can tell the Ethernet controller how to manage which packets and how to route them. The application knows which packets are higher priority, so it can send them on the fastest way around the network and ahead of other packets, while it can send non-priority packets on different routes to ease congestion.

Unfortunately, it was hard to see how much of a different ADQ did in the examples that Intel provided – they compared a modern Cascade Lake system (equipped with the new E810-CQDA2 dual port 100G Ethernet card and 1TB of Optane DC Persistent Memory) to an old Ivy Bridge system with a dual-port 10G Ethernet card and 128 GB of DRAM (no Optane). While this might be indicative of a generational upgrade to the system, it’s a sizeable upgrade that hides the benefit of the new technology by not providing an apples-to-apples comparison.
Continue Reading