Thread Rating:
  • 1 Vote(s) - 5 Average
  • 1
  • 2
  • 3
  • 4
  • 5
COMpfun successor Reductor infects files on the fly to compromise TLS traffic
#1
Bug 
Quote:
[Image: compfun-successor-reductor-1.png]

In April 2019, we discovered new malware that compromises encrypted web communications in an impressive way. Analysis of the malware allowed us to confirm that the operators have some control over the target’s network channel and could replace legitimate installers with infected ones on the fly. That places the actor in a very exclusive club, with capabilities that few other actors in the world have.

We called these new modules ‘Reductor’ after a .pdb path left in some samples. Besides typical RAT functions such as uploading, downloading and executing files, Reductor’s authors put a lot of effort into manipulating digital certificates and marking outbound TLS traffic with unique host-related identifiers.

The Kaspersky Attribution Engine shows strong code similarities between this family and the COMPfun Trojan. Moreover, further research showed that the original COMpfun Trojan most probably is used as a downloader in one of the distribution schemes. Based on these similarities, we’re quite sure the new malware was developed by the COMPfun authors.

The COMpfun malware was initially documented by G-DATA in 2014. Although G-DATA didn’t identify which actor was using this malware, Kaspersky tentatively linked it to the Turla APT, based on the victimology. Our telemetry indicates that the current campaign using Reductor started at the end of April 2019 and remained active at the time of writing (August 2019). We identified targets in Russia and Belarus.

We registered two initial infection schemes: Reductor spreads by either infecting popular software distributions (Internet Downloader Manager, WinRAR, etc. and, for at least one victim, through a popular warez website over HTTP); or its decryptor/dropper is spread using COMpfun’s ability to download files on already infected hosts.

How to mark the TLS handshake without even touching the traffic

The malware adds digital certificates from its data section to the target host and allows the operators to add additional certificates remotely through a named pipe. The solution that Reductor’s developers found to mark TLS traffic is the most ingenious part. They don’t touch the network packets at all; instead developers analyzed the Firefox source code and Chrome binary code to patch the corresponding pseudo random number generation (PRNG) functions in the process’s memory.

Browsers use PRNG to generate the ‘client random’ sequence for the network packet at the very beginning of the TLS handshake. Reductor adds encrypted unique hardware- and software-based identifiers for the victims to this ‘client random’ field. In order to patch the system’s PRNG functions, the developers used a small embedded Intel instruction length disassembler.

Why we believe on-the-fly infection took place

As we don’t know what happens on the ‘server’ side, we can only rely on ‘client’ analysis. In order to distinguish handshakes of interest from all the TLS traffic, the campaign operators firstly have to decrypt this ‘client hello’ field. This means the campaign operators somehow need to have access to the target’s traffic.

The Reductor malware does not carry out a man-in-the-middle (MitM) attack itself. However, our initial thought was that the installed certificates may facilitate MitM attacks on TLS traffic; and the ‘client random’ field, with the unique ID in the handshake, would identify the traffic of interest. Later analysis provided even more basis for this idea.

We initially observed that infected installers were downloaded from HTTPS warez websites; but, as often happens, the files themselves were downloaded through unencrypted HTTP. This makes it technically possible to replace the files with malicious ones during the download process. Interestingly, the configuration data of some samples contained very popular legitimate websites. We really don’t think they were compromised to serve as control servers.

In any case, we didn´t initially know how the installers were infected, because the original downloaded files were no longer available for analysis on the warez websites. And there was always the possibility that the installers were infected on the website from which they were originally downloaded.

Then more recent Reductor telemetry gave us a clue. This time samples were again being downloaded from warez websites, but we were able to confirm that in this new case the original installers were not infected. This allowed us to confirm that Reductor’s operators have some control over the target’s network channel and could replace legitimate installers with infected ones on the fly.
...
Continue Reading
Reply


Forum Jump:


Users browsing this thread: 1 Guest(s)
[-]
Welcome
You have to register before you can post on our site.

Username/Email:


Password:





[-]
Recent Posts
AMD reportedly set to launch EPYC 4004 ...
AMD launches EPYC 40...harlan4096 — 09:39
NoVirusThanks OSArmor v2.0.0.0
OSArmor has been u...harlan4096 — 07:10
Apple releases iOS 17.5.1 to fix Photo g...
Apple has released...harlan4096 — 07:08
Microsoft announces Copilot+ PCs and AI-...
On a special event...harlan4096 — 07:06
1.0.98 release (2024/05/19)
1.0.98 release (20...harlan4096 — 06:32

[-]
Birthdays
Today's Birthdays
No birthdays today.
Upcoming Birthdays
avatar (37)axuben
avatar (38)ihijudu
avatar (48)Mirzojap
avatar (34)idilysaju
avatar (38)odukoromu
avatar (44)Joanna4589

[-]
Online Staff
There are no staff members currently online.

>